Abstract

AbstractWith the growth of modern turbofan engines, their integration under the wing becomes challenging and induces aerodynamic and acoustic interactions between the jet exhaust and the airframe. Jet noise reduction techniques have been widely studied over the past decades but their efficiency has still to be demonstrated once installed. The present lab-scale jet experiments at Mach 0.6 compare the noise radiated by beveled and rectangular installed nozzles to circular ones on a quarter-sphere radiation map using a microphone antenna. For all radiation angles, modified nozzles show an amplitude decrease of the jet-plate interaction tones of the noise spectra attributed to a strong coupling between the jet shear layers and the sound scattering at the plate trailing edge. Beveled nozzles achieve a noise reduction for all radiation angles with a maximum decrease up to 2 dB at receiver locations perpendicular to the plate. While rectangular nozzles show a similar behavior, a sound increase is observed for listeners parallel to the plate when the height-to-width ratio is small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call