The runway exit points (REPs) of the airport are constructed considering the operational performance of different types of aircraft based on historical flight data. In sequence planning, it is assumed that aircraft will vacate the runway from an expected exit point. However, real performance can be uncertain, and the same type of aircraft may vacate the runway from different exit points rather than the expected point. In addition, the runway occupancy times (ROTs) of aircraft that vacate the runway from the same exit point may not be equal. This situation brings two types of uncertainty when making traffic plans in an airport with several REPs. The first uncertainty is the REP of the aircraft, and the second is the ROT uncertainty considering the exit points. In this study, a two-stage stochastic programming model was developed for aircraft sequencing in an airport that has multiple runway exit points. In the model, both runway exit and ROT uncertainties are considered. A runway with multiple exit points at an airport in Turkey was selected and flight track data of 154 arrival flights to this runway was examined. Various expected time of arrival and departure (ETAD) scenarios were generated based on real data and integrated into the mathematical models. The proposed model was then compared with deterministic and first come first serve (FCFS) approaches in terms of total delay. As a result of the comparison and analyses, the presented stochastic programming model provided robust solutions and delay savings compared to the other approaches.
Read full abstract