BackgroundRaman spectroscopy has been extensively utilized as a marker-free detection method in the complementary diagnosis of cancer. Multivariate statistical classification analysis is frequently employed for Raman spectral data classification. Nevertheless, traditional multivariate statistical classification analysis performs poorly when analyzing large samples and multicategory spectral data. In addition, with the advancement of computer vision, convolutional neural networks (CNNs) have demonstrated extraordinarily precise analysis of two-dimensional image processing. ResultCombining 2D Raman spectrograms with automatic weighted feature fusion network (AWFFN) for bladder cancer detection is presented in this paper. Initially, the s-transform (ST) is implemented for the first time to convert 1D Raman data into 2D spectrograms, achieving 99.2% detection accuracy. Second, four upscaling techniques, including short time fourier transform (STFT), recurrence map (RP), markov transform field (MTF), and grammy angle field (GAF), were used to transform the 1D Raman spectral data into a variety of 2D Raman spectrograms. In addition, a particle swarm optimization (PSO) algorithm is combined with VGG19, ResNet50, and ResNet101 to construct a weighted feature fusion network, and this parallel network is employed for evaluating multiple spectrograms. Class activation mapping (CAM) is additionally employed to illustrate and evaluate the process of feature extraction via the three parallel network branches. The results demonstrate that the combination of a 2D Raman spectrogram along with a CNN for the diagnosis of bladder cancer obtains a 99.2% accuracy rate,which indicates that it is an extremely promising auxiliary technology for cancer diagnosis. SignificanceThe proposed two-dimensional Raman spectroscopy method has an improved precision than one-dimensional spectroscopic data, which presents a potential methodology for assisted cancer detection and providing crucial technical support for assisted diagnosis.
Read full abstract