Abstract

Sex estimation is extremely important in the analysis of human remains as many of the subsequent biological parameters are sex specific (e.g., age at death, stature, and ancestry). When dealing with incomplete or fragmented remains, metric analysis of the tarsal bones of the feet has proven valuable. In this study, the utility of 18 width, length, and height tarsal measurements were assessed for sex-related variation in a Portuguese sample. A total of 300 males and females from the Coimbra Identified Skeletal Collection were used to develop sex prediction models based on statistical and machine learning algorithm such as discriminant function analysis, logistic regression, classification trees, and artificial neural networks. All models were evaluated using 10-fold cross-validation and an independent test sample composed of 60 males and females from the Identified Skeletal Collection of the 21st Century. Results showed that tarsal bone sex-related variation can be easily captured with a high degree of repeatability. A simple tree-based multivariate algorithm involving measurements from the calcaneus, talus, first and third cuneiforms, and cuboid resulted in 88.3% correct sex estimation both on training and independent test sets. Traditional statistical classifiers such as the discriminant function analysis were outperformed by machine learning techniques. Results obtained show that machine learning algorithm are an important tool the forensic practitioners should consider when developing new standards for sex estimation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call