Abstract
Prediction of protein subcellular location has currently become a hot topic because it has been proven to be useful for understanding both the disease mechanisms and novel drug design. With the rapid development of automated microscopic imaging technology in recent years, classification methods of bioimage-based protein subcellular location have attracted considerable attention for images can describe the protein distribution intuitively and in detail. In the current study, a prediction method of protein subcellular location was proposed based on multi-view image features that are extracted from three different views, including the four texture features of the original image, the global and local features of the protein extracted from the protein channel images after color segmentation, and the global features of DNA extracted from the DNA channel image. Finally, the extracted features were combined together to improve the performance of subcellular localization prediction. From the performance comparison of different combination features under the same classifier, the best ensemble features could be obtained. In this work, a classifier based on Stacked Auto-encoders and the random forest was also put forward. To improve the prediction results, the deep network was combined with the traditional statistical classification methods. Stringent cross-validation and independent validation tests on the benchmark dataset demonstrated the efficacy of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE/ACM Transactions on Computational Biology and Bioinformatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.