While human vision spans 220°, traditional functional MRI setups display images only up to central 10-15°. Thus, it remains unknown how the brain represents a scene perceived across the full visual field. Here, we introduce a method for ultra-wide angle display and probe signatures of immersive scene representation. An unobstructed view of 175° is achieved by bouncing the projected image off angled-mirrors onto a custom-built curved screen. To avoid perceptual distortion, scenes are created with wide field-of-view from custom virtual environments. We find that immersive scene representation drives medial cortex with far-peripheral preferences, but shows minimal modulation in classic scene regions. Further, scene and face-selective regions maintain their content preferences even with extreme far-periphery stimulation, highlighting that not all far-peripheral information is automatically integrated into scene regions computations. This work provides clarifying evidence on content vs. peripheral preferences in scene representation and opens new avenues to research immersive vision.