Abstract

Semicontinuous distillation is a separation technique used to purify multicomponent mixtures with low to medium throughput. This research addresses the problem of designing a Data-driven Model Predictive Control (MPC) approach that enables minimizing the Total Annualized Cost (TAC) of the semicontinuous process per tonne of feed processed while maintaining the required product purity. In lieu of typically unavailable first principles models, the manuscript demonstrates the implementation of data-driven technique using data collected from an Aspen Plus Dynamics simulation as a test bed. A subspace model identification technique is adapted to develop a multi-model framework to capture the dynamic behavior of the process and then utilized within a Shrinking Horizon MPC (SHMPC) scheme, to achieve the required objective. The simulation results demonstrate a lowering of the TAC/tonne of feed by 11.4% compared to the traditional PI setup used in the previous studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.