Computed tomography (CT) is capable of generating detailed cross-sectional images of the scanned objects non-destructively. So far, CT has become an increasingly vital tool for 3D modelling of cultural relics. Compressed sensing (CS)-based CT reconstruction algorithms, such as the algebraic reconstruction technique (ART) regularized by total variation (TV), enable accurate reconstructions from sparse-view data, which consequently reduces both scanning time and costs. However, the implementation of the ART-TV is considerably slow, particularly in cone-beam reconstruction. In this paper, we propose an efficient and high-quality scheme for cone-beam CT reconstruction based on the traditional ART-TV algorithm. Our scheme employs Joseph's projection method for the computation of the system matrix. By exploiting the geometric symmetry of the cone-beam rays, we are able to compute the weight coefficients of the system matrix for two symmetric rays simultaneously. We then employ multi-threading technology to speed up the reconstruction of ART, and utilize graphics processing units (GPUs) to accelerate the TV minimization. Experimental results demonstrate that, for a typical reconstruction of a 512 × 512 × 512 volume from 60 views of 512 × 512 projection images, our scheme achieves a speedup of 14 × compared to a single-threaded CPU implementation. Furthermore, high-quality reconstructions of ART-TV are obtained by using Joseph's projection compared with that using traditional Siddon's projection.
Read full abstract