Abstract

In recent years, score-based diffusion models have emerged as effective tools for estimating score functions from empirical data distributions, particularly in integrating implicit priors with inverse problems like CT reconstruction. However, score-based diffusion models are rarely explored in challenging tasks such as metal artifact reduction (MAR). In this paper, we introduce the BiConstraints Diffusion Model for Metal Artifact Reduction (BCDMAR), an innovative approach that enhances iterative reconstruction with a conditional diffusion model for MAR. This method employs a metal artifact degradation operator in place of the traditional metal-excluded projection operator in the data-fidelity term, thereby preserving structure details around metal regions. However, scorebased diffusion models tend to be susceptible to grayscale shifts and unreliable structures, making it challenging to reach an optimal solution. To address this, we utilize a precorrected image as a prior constraint, guiding the generation of the score-based diffusion model. By iteratively applying the score-based diffusion model and the data-fidelity step in each sampling iteration, BCDMAR effectively maintains reliable tissue representation around metal regions and produces highly consistent structures in non-metal regions. Through extensive experiments focused on metal artifact reduction tasks, BCDMAR demonstrates superior performance over other state-of-the-art unsupervised and supervised methods, both quantitatively and in terms of visual results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.