In this paper, we consider a cognitive radio network that consists of one cognitive base station (CBS) and multiple cognitive users (CUs) in the presence of an eavesdropper. In the cognitive radio network, CBS first detects whether there is spectrum hole through spectrum sensing and then communicates with CUs over the detected spectrum hole. Due to the broadcast nature of wireless transmission, the eavesdropper can overhear the cognitive transmissions between CBS and CUs and attempts to decode its overheard signals for interception purpose. In order to effectively defend against the eavesdropping attack, we propose a multiuser scheduling scheme for cognitive transmissions, where a CU with the highest instantaneous capacity to CBS is selected and scheduled to communicate with CBS. We analyze the security-reliability trade-off performance of proposed multiuser scheduling scheme for cognitive transmissions with the imperfect spectrum sensing over Rayleigh fading channels, where the security and reliability are evaluated in terms of the intercept probability and the outage probability, respectively. Numerical results illustrate that as the intercept probability requirement loosens, the outage probability of proposed multiuser scheduling scheme decreases accordingly, showing the trade-off between security and reliability. In addition, as the number of CUs increases, numerical intercept probability and outage probability of the multiuser scheduling scheme significantly improve, implying the security and reliability benefits through multiuser scheduling.
Read full abstract