Abstract

Cognitive radio has attracted considerable attention as an enabling technology for addressing the problem of radio frequency shortages. In cognitive radio networks (CRNs), secondary users (SUs) are allowed to opportunistically utilize the licensed spectrum bands of primary users (PUs) when these bands are temporarily unused. Thus, SUs should monitor the licensed spectrum bands to detect any PU signal. According to the sensing outcomes, SUs should vacate the spectrum bands or may use them. Generally, the spectrum sensing accuracy depends on the sensing time which influences the overall throughput of SUs. That is, there is a fundamental tradeoff between the spectrum sensing time and the achievable throughput of SUs. To determine the optimal sensing time and improve the throughput of SUs, considerable efforts have been expended under the saturated traffic and ideal channel assumptions. However, these assumptions are hardly valid in practical CRNs. In this paper, we provide the framework of an 802.11-based medium access control for CRNs, and we analyze this framework to find the optimal spectrum sensing time under the saturated and unsaturated traffic condition. Through simulation, the proposed analytic model is verified and the fundamental problem of the sensing-throughput tradeoff for CRNs is investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.