This study explores the control framework for the trajectory tracking problem concerning unmanned surface vessels (USVs) in the presence of time-varying communication delays. To address the aforementioned problem, a novel networked predictive sliding mode control architecture is proposed by integrating a discrete sliding mode control technique and predictive control scheme. By leveraging a first-order forward Euler discretization approach, a discrete-time model of USVs was initially formulated. Then, a virtual velocity controller was developed to convert the position tracking into expected velocity tracking, which was achieved by utilizing a sliding mode control. Subsequently, a networked predictive control technique was performed to compensate for the time-varying delays. Finally, theoretical analysis and extensive comparative simulation tests demonstrated that the proposed control scheme guaranteed complete compensation for time-varying delays while ensuring the stability of the closed-loop system.
Read full abstract