Abstract

Event-based pixel sensors asynchronously report changes in log-intensity in microsecond-order resolution. Its exceptional speed, cost effectiveness, and sparse event stream make it an attractive imaging modality for particle tracking velocimetry. In this work, we propose a causal Kalman filter-based particle event velocimetry (KF-PEV). Using the Kalman filter model to track the events generated by the particles seeded in the flow medium, KF-PEV yields the linear least squares estimate of the particle track velocities corresponding to the flow vector field. KF-PEV processes events in a computationally efficient and streaming manner (i.e., causal and iteratively updating). Our simulation-based benchmarking study with synthetic particle event data confirms that the proposed KF-PEV outperforms the conventional frame-based particle image/tracking velocimetry as well as the state-of-the-art event-based particle velocimetry methods. In a real-world water tunnel event-based sensor data experiment performed on what we believe to be the widest field view ever reported, KF-PEV accurately predicted the expected flow field of the SD7003 wing, including details such as the lower velocity in the wake and the flow separation around the underside of an angled wing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.