Detecting obstacles in the rail track area is crucial for ensuring the safe operation of trains. However, this task presents numerous challenges, including the diverse nature of intrusions, and the complexity of the driving environment. This paper presents a multimodal fusion rail-obstacle detection approach by key points processing and rail track topology reconstruction. The core idea is to leverage the rich semantic information provided by images to design algorithms for reconstructing the topological structure of railway tracks. Additionally, it combines the effective geometric information provided by LiDAR to accurately locate the railway tracks in space and to filter out intrusions within the track area. Experimental results demonstrate that our method outperforms other approaches with a longer effective working distance and superior accuracy. Furthermore, our post-processing method exhibits robustness even under extreme weather conditions.