Abstract

Object tracking still remains challenging in computer vision because of the severe object variation, e.g., deformation, occlusion, and rotation. To handle the object variation and achieve robust object tracking performance, we propose a novel relationship-based tracking algorithm using neural networks in this paper. Compared with existing approaches in the literature, our method assumes the targeted object to be consisted of several parts and considers the evolution of the topology structure among these parts. After training a candidate neural network for predicting the probable areas each part may locate at in the successive frame, we then design a novel collaboration neural network to determine the precise area each part will locate at with account for the topology structure among these individual parts, which is learned from their historical physical locations during online tracking process. Experimental results show that the proposed method outperforms state-of-the-art trackers on a benchmark dataset, yielding the significant improvements in accuracy on high-distorted sequences.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.