BackgroundThe current speciation methods for mercury (Hg) measurements are fraught with considerable uncertainty, from sample collection to calibration. High reactivity of gaseous oxidized Hg (GOM) species and their ultra-trace level presence makes them difficult to sample and calibrate. Given that improper calibration may lead to measurement biases, reliable and metrologically traceable calibration methods are required for accurately quantifying GOM in air. In the present study, we applied the recently developed calibration method based on non-thermal plasma oxidation of elemental Hg, to a commercially available Hg air speciation system for actual environmental measurements of GOM for the first time. ResultsHg species such as HgO, HgCl2, and HgBr2 were produced with trace amounts of reactant gases (oxygen and electrolytically produced chlorine and bromine) and the production was driven by plasma-assisted oxidation. The plasma oxidation efficiency of elemental Hg with oxygen was 98.5 ± 7.5 % (k = 2), while that for chlorine and bromine was 96.8 ± 6.9 % (k = 2) and 97.4 ± 9.6 % (k = 2), respectively. The calibration method was tested against the internal permeation (Hg0) source of the Tekran 2537B Hg analyzer on-field by loading HgO to different KCl-coated denuders using the plasma. GOM concentrations were measured using the Tekran speciation system. With internal calibration, concentrations were up to 9.1 % lower than those in plasma calibration, thereby emphasizing the importance of the calibration strategy. Measurement uncertainty (k = 2) further emphasizes this distinction. Internal calibration measurement uncertainty was 36.8 %, while plasma calibration boasted lower uncertainty at 13.8 %. SignificanceThe non-thermal plasma calibration strategy, as a unique and discrete calibration method traceable to the NIST SRM 3133 for ambient air GOM measurements, provide a higher level of confidence in the accuracy of GOM measurements with several advantages over other methods. Calibrations at extreme low concentrations (<100 pg) are possible with this method relevant to ambient air GOM concentrations.
Read full abstract