Testosterone plays an important role in mammalian brain development. In neural regions with appropriate receptors testosterone, or its metabolites, influences patterns of cell death and survival, neural connectivity and neurochemical characterization. Consequently, testosterone exposure during critical periods of early development produces permanent behavioural changes. In humans, affected behaviours include childhood play behaviour, sexual orientation, core gender identity and other characteristics that show sex differences (i.e. differ on average between males and females). These influences have been demonstrated primarily in individuals who experienced marked prenatal hormone abnormalities and associated ambiguities of genital development (e.g. congenital adrenal hyperplasia). However, there is also evidence that testosterone works within the normal range to make some individuals within each sex more sex-typical than others. The size of testosterone-related influences, and perhaps even their existence, varies from one sex-typed characteristic to another. For instance: prenatal exposure to high levels of testosterone has a substantial influence on sex-typical play behaviour, including sex-typed toy preferences, whereas influences on core gender identify and sexual orientation are less dramatic. In addition: there appears to be little or no influence of prenatal testosterone on mental rotations ability, although mental rotations ability shows a marked sex difference. These findings have implications for basic understanding of the role of testosterone in normative gender development, as well as for the clinical management of individuals with disorders of sex development (formerly called intersex syndromes).
Read full abstract