Shiga toxins (Stxs), produced by Shigella dysenteriae serotype 1 and certain Escherichia coli pathotypes, cause hemorrhagic colitis, which can progress to hemolytic uremic syndrome (HUS) and central nervous system (CNS) pathology. The underlying mechanisms of toxin-induced inflammation remain unclear. The p38 mitogen-activated protein kinase (MAPK) and its downstream target, MAPKAPK2 (MK2), play key roles in various cellular responses. We identified Tristetraprolin (TTP) as a novel substrate of MK2 in Stx-intoxicated cells. Western blot analysis showed that Stxs induce phosphorylation of MK2 (Thr334) and TTP in globotriaosylceramide (Gb3)-positive cells, including D-THP-1 macrophage-like cells and HK-2 renal epithelial cells, but not in Gb3-negative T84 colon carcinoma cells. After treatment with wild-type Stx, the activity of phosphorylated MK2 and TTP persists for up to 8 h, while Stx2amut, which lacks N-glycosidase activity, causes transient MK2/TTP phosphorylation. This suggests that Stxs selectively mediate MK2 and TTP activation in a Gb3-dependent manner. Knockdown of TTP in Stx2a-treated D-THP-1 cells upregulates proinflammatory cytokines such as TNF-α, IL-1β, IL-6, IL-8, MCP-1, and MIP-1α. The MK2 inhibitor PF-3644022 significantly reduces TTP phosphorylation and blocks the production of IL-6, IL-8, MCP-1, and MIP-1α in Stx2a-stimulated HK-2 cells. In conclusion, the MK2-TTP signaling pathway regulates the inflammatory response induced by Stxs in toxin-sensitive cells.
Read full abstract