Abstract

For diphtheria toxin to be cytotoxic, the enzymatically active part (fragment A) must be translocated to the cytosol. We here demonstrate that additional proteins linked as N-terminal extensions can be translocated along with fragment A across the plasma membrane of toxin-sensitive cells. Thus, an extra fragment A of diphtheria toxin and some of apolipoprotein AI were translocated as passenger proteins along with mutant diphtheria toxin fragment A. Translocation was monitored by the cytotoxic effect of the additional fragment A as well as by the translocation of [35S]methionine-labelled protein to a compartment protected from externally added pronase. Cytotoxicity experiments indicated that double A fragments can also be translocated across the membrane of intracellular vesicles. The results demonstrate that the translocation apparatus used for toxin translocation is not limited to a single A fragment but can accommodate additional proteins as well. The fact that proteins as large as 20 kDa can be brought into cells by way of diphtheria toxin under both in vitro and in vivo conditions opens up the possibility of using diphtheria toxin mutants for introducing molecules with biological activity into cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.