This study examines the significant impact of bacterial, algal, and fungal toxins on foodborne illnesses, and stresses the importance of advanced detection techniques, such as high-performance liquid chromatography (HPLC)-based methodologies. It emphasizes the urgent need for further advancements in these techniques to ensure food safety, as they offer significant benefits, including low detection limits and the ability to be combined with other techniques to detect a wide range of toxins. In this regard, HPLC has emerged as a versatile and sensitive analytical technique for this purpose. Various HPLC methods, often enhanced with detectors such as ultraviolet (UV), fluorescence (FD), and mass spectrometry (MS), have been developed to identify and quantify microbial toxins in a wide variety of food samples. Recent advancements include HPLC-FD methods that utilize the natural fluorescence of certain aflatoxins, improving detection sensitivity. HPLC-MS/MS and UHPLC-MS/MS techniques offer high selectivity and sensitivity, making them suitable for detecting a wide range of toxins in trace quantities. The adaptability of HPLC, combined with innovative detection technologies and sample preparation methods, holds significant potential for enhancing food safety monitoring and reducing the global burden of foodborne diseases.
Read full abstract