Abstract

Aflatoxin is regarded as the potent carcinogenic agent which is secreted from fungi and present in some food products. So far, many detection methods have been developed to determine the trace amounts of aflatoxin in foods. In the present study a colorimetric competitive assay for detection of aflatoxin B1 (AFB1) has been developed based on interaction of gelatin functionalized gold nanoparticles (AuNPs@gelatin) in specific enzymatic reaction. Bacterial supernatant containing gelatinase enzyme were used as the substrate that could digest the coated gelatin on the surface of AuNPs and following in the presence of NaCl medium ingredient resulted to color change of AuNPs colloidal solution from red to purple. It was observed that with addition of aflatoxin to the bacterial supernatant, aflatoxin could interfere in aggregation of AuNPs and inhibited the process which subsequently prevent the expected color change induced by AuNPs aggregation. The supernatant containing AuNPs were investigated to analyze their induced surface plasmon resonance spectra through UV–visible spectroscopy. The absorption values were directly proportional with the applied AFB1 concentration. The experiment conditions including incubation time, AuNPs concentration and pH were investigated. The obtained results showed that through this approach we could detect the AFB1 in a linear range from 10 to 140 pg ml−1, with detection limit of 4 pg ml−1. Real sample assay in saffron samples showed recoveries percentage of 92.4%–95.3%. The applied approach proposed simple, cost effective and specific method for detection of AFB1 toxin in food samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call