Abstract

Aflatoxins are potent carcinogens and produced by almost all Aspergillus parasiticus isolates and about 35% of Aspergillus flavus isolates. Chemical methods are used for detection of aflatoxins in food and feed. These methods cannot detect aflatoxinogenic fungi in samples, which contain undetectable amounts of aflatoxins. The objective of this research work was to ascertain the importance of molecular and microbiological methods in detection of aflatoxinogenic fungus A. parasiticus in food and feed samples in Jordan. Specific media for the detection of aflatoxins showed the prevalence of A. parasiticus (6–22%) in contaminated food and feed samples. HPLC method confirmed the presence of aflatoxins B1, B2, G1, and G2 in food sample contaminated with A. parasiticus. Primer set OmtBII-F and OmtBII-R amplified DNA fragment of 611 base pairs from genomic DNA of aflatoxinogenic A. parasiticus isolated from food and feed samples but could not amplify DNA fragment of nonaflatoxinogenic A. flavus. The results of this study showed the prevalence of aflatoxinogenic A. parasiticus in food and feed samples in Jordan and give further evidence of suitability of microbiological and molecular methods in detection of aflatoxins, which are reliable low-cost approach to determine food and feed biosafety.

Highlights

  • Aflatoxins are fungal metabolites known for their potent carcinogenic properties

  • HPLC method confirmed the presence of aflatoxins B1, B2, G1, and G2 in food sample contaminated with A. parasiticus

  • Primer set OmtBII-F and OmtBII-R amplified DNA fragment of 611 base pairs from genomic DNA of aflatoxinogenic A. parasiticus isolated from food and feed samples but could not amplify DNA fragment of nonaflatoxinogenic A. flavus

Read more

Summary

Introduction

Aflatoxins are fungal metabolites known for their potent carcinogenic properties. The ability of aflatoxin production has been reported in various species of the Aspergillus genus, inside and outside the Flavi group [1]. Various studies have indicated that aflatoxins are primarily produced by Aspergillus parasiticus and Aspergillus flavus isolates. These studies indicated that the majority of A. flavus isolates (60–70%) are atoxigenic [1,2,3], whereas almost all isolates of A. parasiticus are aflatoxinogenic and are potential aflatoxins producers in agricultural commodities [3,4,5]

Methods
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call