Although coal tar pitch (CTP) has a large yield in China, its large-scale and effective utilization is significantly hindered because of existing and possibly releasing polycyclic aromatic hydrocarbons (PAHs). Therefore, it is an imminent problem how to prepare an environmentally friendly CTP by detoxification modification. In the investigation, a typical CTP was subjected to structural characterization via solid-state 13C NMR and gas chromatograph/mass spectrometer, which confirmed the existence of dominant PAHs such as fluoranthene, pyrene, as well as benzo[a]pyrene, and few heterocyclic compounds. Subsequently, the CTP was modified using 10-undecenal via alkylation reaction enhanced by ultraviolet & microwave radiation. Compared with the original CTP, the total content of 16 toxic PAHs in the modified CTP decreased with a reduction efficiency of above 90%. According to different environmental standards, toxic equivalent quotient of CTP after modification was reduced by above 90%. In order to veritably and fully evaluate the toxicity of CTP, a living vascular smooth muscle cell (A-10 cell) in vitro was used in the cell counting kit-8 assay. The viability of A-10 cell was always higher when exposed to modified CTP than the original CTP. These results powerfully indicated that the enhanced modification was actually effective and efficient for reducing the toxicity of CTP.