Abstract

Polycyclic aromatic hydrocarbons (PAHs) have become the dominating burden in the Arctic ecosystems, but their transport pathways and relative importance of different sources in the Arctic remained unclear, and this would be further complicated by climate change. Here we interpreted 27 PAHs in 34 surface sediments from the northern Bering-Chukchi margin. We integrated source apportionment methods (including diagnostic ratios, principal component analysis, hierarchical analysis, and positive matrix factorization (PMF) model) together with geochemistry parameters, which reveal a gradually clear picture of the spatial patterns of different sources. The total PAH concentrations (50.4 to 896.0 ng/g dw) exhibited a “hilly” shape with the increase of latitude, showing the highest level of PAHs in the northeast Chukchi Sea. The total BaP toxic equivalent quotient (TEQ) for carcinogenic compounds was from 1.06 to 33.3 ng TEQ/g. Most PAHs showed positive correlations with silt content, total organic carbon, stable carbon isotopes and black carbon (p < 0.01 or 0.05). Generally, source apportionment methods revealed an increasing petrogenic source of PAHs with latitudes. The PMF model further differentiated two petrogenic (36.7%), two pyrogenic (softwood and fossil fuel combustion, 35.5%) and one in-situ biogenic source (Perylene, 27.8%). An extremely high petrogenic signal was captured in the Canada Basin margin, possibly originating from the Mackenzie River via ice drifting with Beaufort Gyre, while another petrogenic source may come from coal deposit erosion by deglaciation. Softwood combustion (characterized by Retene) exhibited exclusively higher contribution in the northeast Chukchi Sea and might result from the increasing wildfire in Alaska due to climate change, whereas fossil fuel combustion exhibited similar contributions across different latitudes. Our results revealed natural PAHs as important “inside sources” in the Arctic, which are highly sensitive to global warming and deserves more attention.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call