AbstractOutdoor water use represents over 50% of total water demand in semiarid and arid cities and presents both challenges to and opportunities for improved efficiency and water resilience. The current work adapts a remote sensing‐based methodology to estimate growing season irrigation rates at the census block group scale in Denver, Colorado. Results show that city‐wide outdoor water use does not change significantly from 1995 to 2018, while per capita water use and total water use significantly decrease from 2000 to 2018. Because total water use, but not outdoor use, is decreasing, the percent of water used outdoors significantly increases across the city from 2000 to 2018. Climate variables account for one‐quarter of interannual variation in mean irrigation rates due primarily to changes in temperature, not precipitation. Percent impervious land cover exhibits a significant inverse nonlinear relationship with irrigation rates at the census block group scale. Finally, 38% of Denver census block groups show significantly increasing irrigation rates between 1995 and 2018 driven primarily by increasing temperatures. The increasing proportion of water used for irrigation highlights the importance of outdoor demand management for urban water systems as indoor efficiencies improve. We advocate that resilient water systems necessitate integrated land use, infrastructure, and water planning in the face of urban growth and climate change. While minimizing irrigated urban areas may reduce demand, remaining green spaces should be designed to maximize multiple benefits including reductions in water demand and urban heat islands, stormwater management, and recreation to improve the sustainability of growing cities.