An observed decrease in total organic carbon (TOC) and dissolved organic carbon (DOC) concentrations following wastewater disinfection with medium pressure (MP, polychromatic) ultraviolet (UV) irradiation during wet weather flows is investigated. When antecedent rainfall in the previous 7-days was >2 in (5 cm), TOC and DOC concentrations decreased dramatically following MP-UV disinfection. Organic carbon surrogate measurements of biological oxygen demand (BOD), TOC, DOC, turbidity, UVA – 254 nm, SUVA (specific UVA), scanning UV–Visible spectra (200–600 nm), fluorescence excitation-emission matrix (EEM) spectra, and light scattering data are presented for wastewater resource recovery facility (WRRF) influent, secondary effluent (pre-UV-disinfection), and MP-UV-disinfected (final effluent) samples. TOC and DOC in wastewater influent and secondary effluent (i.e., pre-UV disinfection) correlated with antecedent rainfall conditions. The percent TOC and DOC removal through secondary treatment (i.e., from influent to effluent pre-UV) and the percent TOC and DOC removal through MP-UV disinfection (i.e., from effluent pre-UV to effluent post-UV) were compared and the latter approached 90 % through MP-UV disinfection during high antecedent rainfall conditions. Spectroscopy (UV, visible, or fluorescence) was performed on samples after filtration through 0.45 μm filters, i.e., the operationally defined DOC fraction of aquatic carbon. Scanning UV–visible spectra indicated transformation of an unidentified wastewater component into light-scattering entities regardless of antecedent rainfall conditions. The types of organic carbon (diagenetic, biogenic, or anthropogenic) and the significance of wet weather are discussed. An organic carbon contribution via infiltration and inflow was attributed as a source-of-interest in this research.
Read full abstract