Abstract

In this study, an internal circulation-anoxic/aerobic (IC-A/O) process followed by ultrafiltration (UF) and reverse osmosis (RO) system was applied for paper wastewater reclamation. The IC-AO system presented a stable and efficient performance, achieving high removal of chemical oxygen demand (COD), total organic carbon (TOC) and total nitrogen (TN) with methane production rate of 132.8 mL/d. Acute toxicity to Daphnia magna (D. magna) was reduced significantly (83.2%) and the spearman's rank correlation analysis indicated that the toxicity of effluents from each reactor were positively correlated with COD and TOC. Hexadecanoic acid, octadecanoic acid and benzophenone were the main toxic contributors for biological effluent. Microbial community revealed that Anaerolinea was significantly related with organic pollutants. The UF-RO system further removed pollutants and toxicity with the final effluent COD, TOC, ammonium nitrogen (NH4+-N) and TN of 32.6, 18.8, 0.3 and 9.2 mg/L, respectively, which proved that it was feasible for paper wastewater reuse. This study presented an efficient, practical and environmentally competitive system, and paved a foundation for the treatment and reuse of paper wastewater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call