Chemical characteristics and the sources of submicron particles (<1 μm in diameter) were investigated in Valle Alegre, the coastal area of Central Chile. The chemical composition of particles was studied by using a Soot particle Aerosol Mass Spectrometer and Multi-Angle Absorption Photometer. Submicron particles were dominated by organics (42% of mass) and sulfate (39% of mass) while the mass fractions of ammonium, nitrate and black carbon were much smaller (13, 2 and 4% of mass, respectively). Additionally, several metals (V, Zn, Fe, Cd, Cu, K, Na and Mg) were detected in submicron particles and also some of their inorganic salts (e.g. NaCl+, MgCl2+, CaCl2+, KCl+ and KNO3+). The sources of particles were examined by using Positive Matrix Factorization (PMF). Organic aerosol (OA) was divided into five factors by using PMF; hydrocarbon-like OA (HOA), biomass burning OA (BBOA), low-volatility oxygenated OA (LV-OOA), semi-volatile OA (SV-OOA) and marine oxygenated OOA (MOOA). Oxygenated factors (LV-OOA; SV-OOA and MOOA) comprised 75% of total OA with LV-OOA being the dominant factor (38% of OA). Sulfate had two major sources in Valle Alegre; ∼70% of sulfate was related to anthropogenic sources through the oxidation of gas phase SO2 whereas ∼24% of sulfate was associated with biogenic origin related to the oxidation of dimethyl sulfide in the marine environment. Regarding total submicron particle mass (campaign-average 9.5 μg m−3), the contribution of anthropogenic sources was at least as large as that of biogenic origin.