The objective of this study was to examine the impacts of absolute cuff pressure blood flow restriction (A-BFR) training and incremental cuff pressure blood flow restriction (I-BFR) training, under equal cuff pressures, on body composition and maximal strength among untrained adults. Additionally, we aimed to compare these effects with those observed in high-load resistance training (HL-RT). Thirty-three adults without prior professional sports or resistance training experience were recruited and randomly assigned to three groups (n = 11 per group) for an 8-week training program, held three times weekly. The A-BFR group trained with a 20% 1RM load and a cuff occlusion pressure set at 190 mmHg. The I-BFR group initiated training with an occlusion pressure of 160 mmHg, which incrementally increased by 20 mmHg every two weeks, with other conditions mirroring those of the A-BFR group. The HL-RT group trained with a 70% 1RM load. All three groups demonstrated a statistically significant improvement in lower-body maximal strength (p < 0.01), with no significant differences observed among the groups (p > 0.05). A notable increase in left-leg muscle mass was seen across all groups (p < 0.05). However, total muscle mass, right-leg muscle mass, fat-free mass, BMI, bone mineral density, and bone mineral content remained relatively unchanged (p > 0.05), with no significant differences among the groups (p > 0.05). Only the HL-RT group exhibited a significant increase in left-leg thigh circumference (p < 0.05), while right-leg thigh circumference remained stable (p > 0.05), with no significant intergroup differences (p > 0.05). While A-BFR and I-BFR did not yield statistically significant differences in overall training outcomes, A-BFR demonstrated a slightly stronger potential. A-BFR and I-BFR achieved comparable gains in muscle strength and improvements in body composition to those seen with HL-RT. However, HL-RT demonstrated more significant improvements in leg circumference.
Read full abstract