One of the most important uses of carbon nanotubes (CNTs) as a nanosensor for variouspolluted gases resulting from the burning of petroleum derivatives containing sulfur compoundsor extracted from the gases associated with petroleum, which are isolated by heat.In this investigation, we tested the adhesion of gas molecules connected with oil: we examinedthe adhesion of gas molecules connected with oil: sulfur dioxide (SO2) and hydrogen sulphide(H2S) on the surface of ((5,0) zigzag and length (100 nm)) CNTs using DFT calculations toexplore the high sensitivity to nanosensor for these molecules, which have gotten awesomeconsideration because of environmental and industrial considerations.From the results obtained in this study geometry optimization (structural properties) fornanosensor for useful assention with trial information. While the electronic properties includedcalculate total energy, HOMO energies, LUMO energies, ionization potential, electron affinity,potential electronic chemical, electronegativity, electrochemical hardness and electronic softness,also, the energy gap of the sensors under study has been calculated and the energy gap varies asstated by the type of gases to be detected. Moreover, we used orbital analysis counting the DOSto finding out the possible orbital hybridization between molecules and CNTs. From theseresults, we can say that the CNTs under study ((5,0) zigzag and the length (100 nm)) has a highsusceptibility to being an effective nanosensor for the gas molecules connected with the oil. Thistype of sensor(CNTs/SO2 or H2S) is standout amongst those a large portion essentialpersonalprotective equipment that is to warn the person of the presence of gases associated with oil,especially in areas of normal gas extraction.
Read full abstract