Abstract

We develop a convolutional neural network capable of directly parsing the 3D electronic structure of a molecule described by spatial point data for charge density and electrostatic potential represented as a 4D tensor. This method effectively bypasses the need to construct complex representations, or descriptors, of a molecule. This is beneficial because the accuracy of a machine learned model depends on the input representation. Ideally, input descriptors encode the essential physics and chemistry that influence the target property. Thousands of molecular descriptors have been proposed, and proper selection of features requires considerable domain expertise or exhaustive and careful statistical downselection. In contrast, deep learning networks are capable of learning rich data representations. This provides a compelling motivation to use deep learning networks to learn molecular structure-property relations from "raw" data. The convolutional neural network model is jointly trained on over 20,000 molecules that are potentially energetic materials (explosives) to predict dipole moment, total electronic energy, Chapman-Jouguet (C-J) detonation velocity, C-J pressure, C-J temperature, crystal density, HOMO-LUMO gap, and solid phase heat of formation. This work demonstrates the first use of complete 3D electronic structure for machine learning of molecular properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call