In this paper we study 7D maximally supersymmetric Yang-Mills on a specific 3-Sasakian manifold that is the total space of an SO(3)-bundle over ℂP2. The novelty of this example is that the manifold is not a toric Sasaki-Einstein manifold. The hyperkähler cone of this manifold is a Swann bundle with hypertoric symmetry and this allows us to calculate the perturbative part of the partition function of the theory. The result is also verified by an index calculation. We also discuss a factorisation of this result and compare it with analogous results for S7.
Read full abstract