Abstract
AbstractWe prove that the mean Euler characteristic of a Gorenstein toric contact manifold, that is, a good toric contact manifold with zero 1st Chern class, is equal to half the normalized volume of the corresponding toric diagram and give some applications. A particularly interesting one, obtained using a result of Batyrev and Dais, is the following: twice the mean Euler characteristic of a Gorenstein toric contact manifold is equal to the Euler characteristic of any crepant toric symplectic filling, that is, any toric symplectic filling with zero 1st Chern class.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.