Torsional vibration measurements on rotating machinery have traditionally been undertaken using techniques such as mechanical torsiographs, strain gauging with slip rings or telemetry systems, and encoders (slotted disks, gears, etc.). These techniques have the common limitation that the test machine has to be stopped in order to attach the transducer. The application of a cross-beam laser vibrometer to torsional vibrometry by Simpson and Lamb [1] and further development by Halliwellet al.[2] provided a non-contact torsional measurement technique, resulting in significant time savins. However, this design was restricted to use on shafts with a circular cross-section and had a very small beam crossing zone (<1 mm in depth), which had to be focussed carefully on the shaft surface. This cross-beam design was also unable to distinguish between torsional and transverse shaft vibrations.The invention of the modern (parallel beam) laser torsional vibrometer (LTV) by researchers at the ISVR in Southampton [3,4] overcame the main limitations of the cross-beam device. Their elegant design responds inherently to torsional vibrations only and may be used with shafts of arbitrary cross-section. In addition, the laser probe may be hand-held and there is a significant tolerance in the allowable distance between the laser source and the target surface (typically between 5 and 45 cm). A recent review paper on the development and application of laser torsional vibrometers has been published by Halliwell [5].
Read full abstract