Benzimidazole derivatives can effectively treat nematode parasitic infections; however, some derivatives demand distinct administrative strategies depending on plasma concentration and patient conditions. Numerous studies have examined the potential of natural extracts to exert parasiticidal activity with minimal side effects. Herein, we examined the potential parasiticidal effects of Torreya nucifera extract. The pericarps of T. nucifera were extracted with methanol, dried, and the pellet was dissolved in hot water (Tn-Phw). We designed four individual mouse experiments to clarify the prophylactic and therapeutic effects of Tn-Phw on Trichinella spiralis infection. Also, 100 L1 larvae were isolated and treated with Tn-Phw (10 mg/mL) in vitro to confirm the killing effect. Furthermore, we microscopically examined the morphology of L1 larvae to confirm the parasite-killing effect and analyzed the morphology using a scanning electron microscope (SEM). The expression of three molting-related genes was confirmed to determine whether Tn-Phw induced morphological changes in L1 larvae. Following treatment with Tn-Phw, L1 larvae death was observed after 16 h. Following SEM examination, the healthy muscle larvae showed striated ridges and wrinkles; this was not observed in extract-treated muscle larvae. Expression levels of the three molting-related genes did not differ between the Tn-Phw-treated and control groups. T. spiralis-infected mice pretreated with Tn-Phw showed significantly reduced muscle larva infection when compared with control mice. In all experiments, treatment with Tn-Phw afforded preventive and therapeutic effects against T. spiralis infection and parasitism. Natural substances against nematode parasites could be developed as therapeutic agents with few side effects and enhanced parasiticidal efficacy.
Read full abstract