Abstract

Although vaccines have been developed for rotavirus infections, there is currently no effective therapeutic treatment. Therefore, this study aimed to evaluate the efficacy of 18-hydroxyferruginol (1) and 18-oxoferruginol (2) isolated from Torreya nucifera (T. nucifera) against bovine G8P[7] and porcine G5P[7] rotaviruses using two different assay strategies: 1) reduction of viral infectivity by neutralizing the virus (virucidal assay) and 2) inhibition of viral replication after infection (post-treatment assay). In the post-treatment assay, compounds 1 and 2 exhibited strong anti-rotavirus activity, with 50% effective concentration values of 24.7 μM (selectivity index; SI= 2.52) and 23.2 μM (SI= 1.75) against bovine G8P[7], 21.1 μM (SI= 2.95) and 22.6 μM (SI= 1.80) against porcine G5P[7], respectively. During viral replication, the two compounds demonstrated stronger inhibition of viral RNA synthesis in the late stages (18 h) than in the early stages (6 h). Compounds 1 and 2 also inhibited the synthesis of viral proteins such as VP6, as determined by immunofluorescence assay. Thus, it appears that compounds 1 and 2 isolated from T. nucifera possess strong antiviral activity against rotaviruses, inhibit viral replication, and may be developed into potential plant-derived therapeutic candidates against rotavirus infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call