Abstract

BackgroundAdipose tissue is a critical regulator of lipid storage and endocrine function. Impairment of the recruitment of new adipocytes in the adipose tissue is associated with ectopic fat accumulation, diabetes and insulin resistance. Torreya nucifera, an evergreen conifer that grows in warm temperate climates, has been found to exert beneficial effects against inflammation, infection and diabetes. However, the molecular mechanisms responsible for these effects at the cellular level remain unknown. This study aimed to investigate effects of Torreya nucifera seed oil (TNSO) on 3T3-L1 adipocyte differentiation and its underlying regulatory mechanism.MethodsTo investigate the effects of TNSO on adipocyte differentiation, 3T3-L1 cells were induced to differentiate for 5 days in the presence of 0.75 μL/mL TNSO. Oil Red O staining and an assay for intracellular triglyceride were performed to determine the extent of lipid accumulation in 3T3-L1 cells. To elucidate the underlying mechanism of TNSO, adipogenic gene expression was analyzed using quantitative real-time PCR. Moreover, we monitored TNSO-derived activation of PPARγ and STAT3 with 3T3-L1 reporter cell lines engineered to secrete Gaussia luciferase upon the interaction of a transcription factor to its DNA binding element.ResultsOil Red O staining revealed that TNSO improved the differentiation of 3T3-L1 preadipocytes into mature adipocytes. The mRNA levels of adipogenic genes, including adiponectin, fatty acid synthase (FAS) and adipocyte fatty acid-binding protein (FABP4), were upregulated and intracellular triglyceride levels increased upon TNSO treatment. We also established that adipocyte differentiation was improved by TNSO-derived activation of PPARγ and STAT3.ConclusionsOur results suggest that TNSO improves adipocyte differentiation by regulating the activation of adipogenic transcription factors, indicating that it may serve as a potential treatment strategy for adipocyte dysfunction.

Highlights

  • Adipose tissue is a critical regulator of lipid storage and endocrine function

  • Torreya nucifera seed oil (TNSO) increases lipid accumulation during 3T3‐L1 adipocyte differentiation To examine the effect of TNSO on 3T3-L1 adipocyte differentiation, 3T3-L1 preadipocytes were allowed to differentiate for 5 days with 0.75 μL/mL TNSO

  • The triglyceride content of TNSO-treated cells was approximately 8.5-fold higher than that of the control group (Fig. 2b). These results suggest that TNSO treatment increases lipid accumulation, indicating the progression of adipocyte differentiation

Read more

Summary

Introduction

Impairment of the recruitment of new adipocytes in the adipose tissue is associated with ectopic fat accumulation, diabetes and insulin resistance. This study aimed to investigate effects of Torreya nucifera seed oil (TNSO) on 3T3-L1 adipocyte differentiation and its underlying regulatory mechanism. Healthy adipose tissue relies on a steady renewal of adipocytes, which differentiate in a multistep process called adipogenesis. Adipocyte differentiation is a complex process involving several genes, whose expression is regulated through various adipocyte-specific transcription factors [3, 4]. A key transcription factor in the adipocyte differentiation program is peroxisome proliferator-activated receptor gamma (PPARγ) and signal transducer and activator of transcription 3 (STAT3) plays a critical role in the regulation of other adipocyte-specific. The degree of activation of these transcription factors is associated with the expression of adipocyte-specific genes including fatty acid synthase (FAS), adipocyte fatty acid-binding protein (FABP4) and adiponectin, which regulate metabolic processes in adipocytes [7–9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call