It is hard to simultaneously improve the peak efficiency (η *) and the width of the high-efficiency region ( Gη) for a hydrodynamic torque converter. A combination of comprehensive CFD simulation and multi-objective optimization was pretested. The elaborate CFD simulation calculation included a reasonable mesh layout, a robust algorithm and a correct turbulence model, whose results were also experimentally verified. In our study, the Kriging surrogate model was first used to construct a nonlinear relationship between the inlet and outlet angle and the economic performance index of the hydrodynamic torque converter. To ensure that the accuracy of the surrogate model meet the requirements, we also used 10 sets of sample points to verify the accuracy of our surrogate model. The accuracy is found to meet the requirements, which shows that the accuracy of the constructed surrogate model is relatively high. We choose to apply the second-generation non-dominant sorting genetic algorithm (NSGA-II) to solve our problem. After solving the Pareto frontier solution set, we obtain a set of global optimal solutions on the Pareto frontier solution set. The optimization results show that the η * is increased by 2.49% and that the Gη is increased by 14.23%. We extracted the flow field structure near the turbine region, characterized the difference between original and optimal model from the flow field perspective, and demonstrated the accuracy of our optimization results. Finally, we used CFD to verify our optimization results, further illustrating the accuracy of the optimization results prediction. Literature research indicates that a large amount of experiments to optimize the η * and the Gη of the hydrodynamic torque converter will bring huge trial cost and time cost. We conclude from our research that the proposed calculation method can solve such problems well.
Read full abstract