Heavy metals emanate from diverse anthropogenic activities and the top soil in the vicinity of these activities acts as an immediate sink and facilitates diffusion of heavy metals into the food chain. In the semi-arid plains of India, Prosopis juliflora is the most common and dominant weed along the motorways and barren lands including industrial environs. This investigation hypothesizes the adaptive nature of Prosopis juliflora in the metal enriched soils and attempts to understand its hyper-accumulating potential of metals besides bioconversion/detoxification capability. Prosopis juliflora samples (root, stem, leaves, and pods) from 100 sites in the environs of anthropogenic activities (vehicular emissions and industrial operations) were analyzed for heavy metal concentrations (Cu, Fe, Cr, Cd, Ni, Pb). Prosopis juliflora accumulate metals at the rate of 0.138 mg/kg/day DW for Copper (Cu), Fe: 0.142 mg/kg/day DW, Cr: 0.114 mg/kg/day DW, Ni: 0.048 mg/kg/day DW, Pb: 0.052 mg/kg/day DW, Cd: 0.009 mg/kg/day DW. Furthermore, X-ray Photoelectron Spectroscopy (XPS) metal oxidation state analysis revealed that in the pods of Prosopis juliflora heavy metals (Fe, Cr, Pb) largely existed in non-toxic form (toxic:non-toxic - 3:6), while in the under canopy soil, metals predominantly existed in toxic form (toxic:non-toxic - 7:2); conclusively XPS results ascertains the heavy metal bioconversion/detoxification potential of the plant. These findings suggest that presence of Prosopis juliflora coppice in the barren landscapes across the transportation corridors and metal based industrial zones may ideally favor phyto-remediation of heavy metals.