Traditional video recommendation provides the viewers with customized media content according to their historical records (e.g., ratings, reviews). However, such systems tend to generate terrible results if the data is insufficient, which leads to a cold-start problem. An affective video recommender system (AVRS) is a multidiscipline and multimodal human-robot interaction (HRI) system, and it incorporates physical, physiological, neuroscience, and computer science subjects and multimedia resources, including text, audio, and video. As a promising research domain, AVRS employs advanced affective analysis technologies in video resources; therefore, it can solve the cold-start problem. In AVRS, the viewers’ emotional responses can be obtained from various techniques, including physical signals (e.g., facial expression, gestures, and speech) and internal signals (e.g., physiological signals). The changes in these signals can be detected when the viewers face specific situations. The physiological signals are a response to central and autonomic nervous systems and are mostly involuntarily activated, which cannot be easily controlled. Therefore, it is suitable for reliable emotion analysis. The physical signals can be recorded by a webcam or recorder. In contrast, the physiological signals can be collected by various equipment, e.g., psychophysiological heart rate (HR) signals calculated by echocardiogram (ECG), electro-dermal activity (EDA), and brain activity (GA) from electroencephalography (EEG) signals, skin conductance response (SCR) by a galvanic skin response (GSR), and photoplethysmography (PPG) estimating users’ pulse. This survey aims to provide a comprehensive overview of the AVRS domain. To analyze the recent efforts in the field of affective video recommendation, we collected 92 relevant published articles from Google Scholar and summarized the articles and their key findings. In this survey, we feature these articles concerning AVRS from different perspectives, including various traditional recommendation algorithms and advanced deep learning-based algorithms, the commonly used affective video recommendation databases, audience response categories, and evaluation methods. Finally, we conclude the challenge of AVRS and provide the potential future research directions.