The performance of monolithic HPLC columns Chromolith™ (made by Merck, Germany) and conventional C18 columns Discovery (Supelco, Sigma–Aldrich, Prague, Czech Republic) was tested and the comparison for two topical preparations Ketoprofen gel and Estrogel gel was made. The composition of mobile phases – for Ketoprofen analysis a mixture of acetonitrile, water and phosphate buffer adjusted to pH 3.5 (40:58:2) and for Estrogel analysis a mixture of acetonitrile, methanol, water (23:24:53) – was usually not optimal for analyses at all types of columns. Thus an adjustment of components ratio was necessary for sufficient resolution of the compounds analysed. Various flow rates (1.0–5.0 ml/min) and mobile phases (usually increasing ratio of water content) were applied. Determination of active substances, preservatives and impurities and comparison of retention times and system suitability test parameters was accomplished. For Estrogel gel, following chromatographic conditions were found: using Chromolith Flash RP-18e monolith column, mobile phase was acetonitrile, methanol, water (13:24:63, v/v/v) and flow-rate 3.0 ml/min. Using monolith column ChromolithSpeedROD RP-18e, the mobile phase was acetonitrile, methanol, water (18:24:58, v/v/v) and flow-rate 4.0 ml/min. For the monolith column Chromolith Performance RP-18e, the mobile phase was acetonitrile, methanol, water (23:24:53, v/v/v), flow-rate 3.0 ml/min. Analysis of Ketoprofen gel gave the best results using following analytical conditions: for monolith column Chromolith Flash RP-18e, mobile phase as a mixture of acetonitrile, water, phosphate buffer pH 3.5 (30:68:2, v/v/v) was used, at flow-rate 2.0 ml/min. For ChromolithSpeedROD RP-18e monolith column, acetonitrile, water, phosphate buffer pH 3.5 (35:63:2, v/v/v) was used as a mobile phase at flow-rate 3.0 ml/min. Chromolith Performance RP-18e gave the best results using mobile phase acetonitrile, water, phosphate buffer pH 3.5 (30:68:2, v/v/v) at the flow-rate 5.0 ml/min. It was proved that monolith columns, due to their porosity and low back-pressure, can save analysis time by about a factor of three with sufficient separation efficiency. Thus, for example 11 min long analysis can be performed in 4 min with comparable results.