Abstract

Topical analgesics are widely marketed for treatment of muscle and joint pain. We have recently developed a model of muscle pain and have used this model to evaluate the efficacy of commercially available topical and peroral ketoprofen in order to evaluate the time- and dose-dependence of analgesia. In the present study, we examined the dose- (0, 50, and 100 mg) and time-dependence (hourly to 8 h) of commercially available peroral and topical ketoprofen. In order to achieve infusion times of 8 h (and thus study the time course of analgesic action), we adapted the model of low pH-induced muscle pain in humans to these requirements by applying the infusions continuously for 10 min every hour for 8 h. We found that the 10 min infusion produced reliable and consistent pain levels that were reproducible over the 8 h of the study. The study was performed double-blind, randomized, and with a 1-week interval between each of five different sessions (cross-over). Altogether six volunteers underwent intramuscular infusions of isotonic phosphate-buffered saline solution of pH 5.2; during each 8 h session the infusion was switched on eight times with a duration of 10 min at 50 min intervals (there was no infusion during the 50 min interval). The intramuscular infusion of low pH phosphate buffer induced a localized dull-aching or stinging muscle pain sensation; the flow rate of the pH infusion was individually adjusted to induce pain of a magnitude of 20% on a visual analogue scale (ranging from ‘no pain’ (0%) to ‘unbearable pain’ (100%)). Twenty minutes after starting the infusion the volunteers received a capsule with either a placebo or 50 or 100 mg ketoprofen perorally and, in addition, either placebo gel or 50 or 100 mg of a 2.5% commercial ketoprofen gel was applied topically to the skin. One of the sessions included a placebo gel and an oral placebo. The intensity of the recurrent pain stimulus was significantly reduced by 59% following administration of 100 mg peroral ketoprofen within the first 3 h ( P<0.03, Wilcoxon test); this analgesia lasted up to the sixth hour of the experimental protocol. Oral ketoprofen (50 mg) was less effective and reduced the pain intensity by 45% ( P<0.05) from only the second to the third hour. In contrast, pain reduction after topical ketoprofen application was not of the same magnitude but appeared to be faster to develop (with a maximum effect within 1 h) on average. The maximum pain suppression with 100 mg topical 2.5% ketoprofen gel was by 51% (significant with P<0.03), while 50 mg topical ketoprofen produced a non-significant reduction of 29%. The apparent analgesia was rapid to develop but transient and pain ratings increased back to baseline values within 3 h for the 100 mg dose and within 2 h for the 50 mg dose. This data suggests that topical application of commercial gel-based systems does not provide long-lasting analgesia in the muscle when compared to perorally-dosed ketoprofen. In addition, the data show that even doses of 100 mg peroral ketoprofen do not provide complete relief of muscle pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.