The paper reviews the most common reinforced concrete girder structures of modern bridges used in Ukraine and other countries. The scope, advantages and disadvantages of reinforced concrete structures are considered. The peculiarities of the use of reinforced concrete structures in European countries are reviewed. The most common typical structural solutions of reinforced concrete girder structures used worldwide are given. Options for facilitation of reinforced concrete structures without significant loss of load-bearing capacity are also highlighted. Options for facilitation of structures are presented in the article by lightening the metal load-bearing elements and reducing the weight of the reinforced concrete slab of the carriageway. Reducing the weight of metal elements can be obtained through the use of perforated elements, which can be performed by waste-free technology. To reduce the cost of materials and reduce the weight of the reinforced concrete slab, it is designed lightweight – hollow or ribbed. When removing concrete from the stretched zone, only the ribs of the width required to accommodate the welded frames and ensure the strength of the panels on an inclined cross section are retained. In this case, the plate in the span between the ribs work on the bend as beams of T-section. The top shelf of the plate also works on the local bend between the ribs. During the inspection, the article presents a new design of reinforced concrete girder structure, using perforated box metal elements, made by waste-free technology, and lightweight reinforced concrete slab of the carriageway with hollow formers. Metal blocks are connected to each other by bolts. Metal blocks are made of perforated sheet elements made of waste-free technology. Each block consists of two main beams, transverse diaphragms and a lower plate. The upper belt of the main beams is implemented with the device of horizontal shelves along the entire length of the beams, performing the function of a supporting element for the reinforced concrete slab. Combining all structural elements into a single finished unit is carried out in the factory by automatic welding, which, in turn, allows us to achieve the high factory readiness. The diaphragms of the block are made with a comb along the upper border, on which a profiled steel sheet is placed, which is a fixed formwork for a reinforced concrete slab. The plate is made of non-removable formwork. To ensure the joint operation of the metal part and the reinforced concrete slab, a system of discrete-continuous connections in the form of rigid stops connected in the longitudinal and transverse directions by reinforcing rods is proposed.