Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) are regarded as promising materials for next-generation logic circuits. Top gate field-effect transistors (FETs) have independent gate control ability and can be fabricated directly on TMDC materials without a transfer process. Therefore, it has the merits of device reliability and complementary metal-oxide semiconductor (CMOS) process compatibility, which are demanded in practical circuit-level integration. However, the fabrication of the top gate FET involves depositing an insulating dielectric layer and a gate electrode in sequence on the TMDC channel material, which may affect the device performance. Insightfully investigating the influences of different top-gate-deposition methods on the electrical properties of the TMDC channel and further harnessing these influences to realize a homogeneous CMOS device on an identical 2D TMDC platform are with practice significance. In this work, p/n-type controllable top gate FET arrays based on 2H-MoTe2 are fabricated by using different top-gate-deposition methods. The electron-beam evaporation (EBE) of top metal gate exhibits an obvious n-doping effect on the 2H-MoTe2 channel and converts it from p-type to n-type, whereas the thermal evaporation of top gate affects little to the channel. High-resolution transmission electron microscopy (HR-TEM) analysis reveals that the high-energy metal atoms from the EBE process can penetrate through the 30 nm gate dielectric layers (including 10 nm Al2O3 seeding layer), leading to multiple atomic defects in both MoTe2 and the interface between MoTe2 and Al2O3. Furthermore, by utilizing the top gate engineering, a large-scale double-top-gate MoTe2 homogeneous CMOS inverter array is fabricated. The CMOS inverters exhibit clear logic swing, negligible hysteresis, and high device yield (∼93%), indicating high device reliability and stability. Notably, the fabrication process is facile, free from transfer procedure, and compatible with traditional silicon technology. This work promotes the application of 2D TMDCs in nanoelectronics integration.
Read full abstract