Automatic robotic platforms for robot-aided spinal surgery are mostly employed for drilling the pedicle screw path and do not adapt the tool rotational speed depending on the variation of the bone density. This feature is highly desirable in control strategies for robot-aided pedicle tapping, which may result in a poor quality thread if the surgical tool speed is not adequately tuned depending on the bone density to be threaded. Therefore, the objective of this paper is to propose a novel semi-autonomous control for robot-aided pedicle tapping that is able to (i) identify the bone layer transition, (ii) adapt the tool velocity depending on the detected bone layer density and (iii) stop the tool tip before propulsion of the bone boundaries. The proposed semi-autonomous control for pedicle tapping consists of: (i) a hybrid position/force control loop that allows the surgeon to move the surgical tool along a pre-planned axis and (ii) a velocity control loop that allows him/her to finely tune the tool rotational speed by modulating the tool-bone interaction force along the same axis. The velocity control loop integrates also a bone layer transition detection algorithm that dynamically limits the tool velocity depending on the bone layer density. The approach was tested on the Kuka LWR4+ provided with an actuated surgical tapper which was used to tap a wood specimen simulating the bone layer density characteristics and bovine bones. A normalized maximum time delay in the bone layer transition detection of 0.25 was achieved by the experiments. A success rate of [Formula: see text] was achieved for all the tested tool velocities. The proposed control achieved a maximum steady-state error of 0.4 rpm. The study demonstrated high capability of the proposed approach to i) promptly detect transition among the specimen layers and ii) adapt the tool velocities depending on the detected layers.
Read full abstract