Blood plasma storage is a crucial element of pediatric biobanking. Improperly stored or handled specimens (e.g., at > -30°C) can result in altered biomolecular compositions that no longer reflects invivo reality. We report application of a previously developed assay in adults-the ΔS-Cys-Albumin assay, which facilitates estimation of plasma and serum exposure to thawed conditions-to a population of pediatric EDTA plasma samples from patients aged 3-18 years to determine the assay's applicability, estimate its reference range for pediatric samples, and assess the impact of pre-centrifugation delay at 0°C. In addition, the effect of plasma thawed-state exposure to a range of times at 23°C, 4°C, and -20°C on ΔS-Cys-Albumin was evaluated. Using 98 precollected and processed pediatric EDTA plasma specimens, no difference was found in ΔS-Cys-Albumin under conditions of pre-centrifugation delay for up to 10 hours at 0°C. This lack of change allowed us to estimate a pediatric reference range for ΔS-Cys-Albumin of 7.0%-22.5% (mean of 12.8%) with a modest Pearson correlation between ΔS-Cys-Albumin and age (p = 0.0037, R2 = 0.29). ΔS-Cys-Albumin stability in six specimens at 23°C, 4°C, and -20°C was also evaluated. Plateaus in the decay curves were reached by 1 day, 7 days, and 14-28 days at these respective temperatures. The estimated pediatric reference range observed in children was lower than that previously observed in 180 adults of 12.3%-30.6% (mean of 20.0%), and the slope of the age correlation in children was twice as steep as that from adults. ΔS-Cys-Albumin decay curves at 23°C, 4°C, and -20°C were similar to those previously observed in adults. The data reported here support the use of ΔS-Cys-Albumin in evaluating the integrity and overall exposure of pediatric EDTA plasma specimens to thawed conditions. In doing so, they add an important quality control tool to the biobanker's arsenal.
Read full abstract