Two types of ATP-dependent calcium (Ca(2+)) transport systems were detected in sealed microsomal vesicles from oat roots. Approximately 80% of the total Ca(2+) uptake was associated with vesicles of 1.11 grams per cubic centimeter and was insensitive to vanadate or azide, but inhibited by NO(3) (-). The remaining 20% was vanadate-sensitive and mostly associated with the endoplasmic reticulum, as the transport activity comigrated with an endoplasmic reticulum marker (antimycin A-insensitive NADH cytochrome c reductase), which was shifted from 1.11 to 1.20 grams per cubic centimeter by Mg(2+).Like the tonoplast H(+)-ATPase activity, vanadate-insensitive Ca(2+) accumulation was stimulated by 20 millimolar Cl(-) and inhibited by 10 micromolar 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid or 50 micromolar N,N'-dicyclohexylcarbodiimide. This Ca(2+) transport system had an apparent K(m) for Mg-ATP of 0.24 millimolar similar to the tonoplast ATPase. The vanadate-insensitive Ca(2+) transport was abolished by compounds that eliminated a pH gradient and Ca(2+) dissipated a pH gradient (acid inside) generated by the tonoplast-type H(+)-ATPase. These results provide compelling evidence that a pH gradient generated by the H(+)-ATPase drives Ca(2+) accumulation into right-side-out tonoplast vesicles via a Ca(2+)/H(+) antiport. This transport system was saturable with respect to Ca(2+) (K(m) apparent = 14 micromolar). The Ca(2+)/H(+) antiport operated independently of the H(+)-ATPase since an artifically imposed pH gradient (acid inside) could also drive Ca(2+) accumulation. Ca(2+) transport by this system may be one major way in which vacuoles function in Ca(2+) homeostasis in the cytoplasm of plant cells.
Read full abstract