Abstract

The tonoplast ATPase from corn coleoptile membranes was solubilized using a two-step procedure consisting of a pretreatment with 0.15% (w/v) deoxycholate to remove 60% of the protein, and 40 millimolar octyl-glucoside to solubilize the ATPase. During ultracentrifugation, the solublized ATPase entered a linear sucrose gradient faster than the majority of the protein, resulting in an 11-fold purification over the initial specific activity. The partially purified ATPase was almost completely inhibited by KNO(3) with an estimated K(i) of 10 millimolar. The specific activity of the KNO(3)-sensitive ATPase was increased 29-fold during purification. N,N'-Dicyclohexylcarbodiimide also completely inhibited the ATPase with half-maximal effects at a concentration of 4 micromolar. Neither vanadate nor azide inhibited enzyme activity. The purified ATPase was stimulated by Cl(-) and preferred Mg-ATP as substrate. Analysis of frations from the sucrose gradient by sodium dodecyl sulfate-polyacrylamide gel electrophoresis led to the identification of two major polypeptides at 72,000 and 62,000 daltons which were best correlated with ATPase activity. Several minor bands also appeared to copurify with enzyme activity, but were less consistent. Radiation inactivation experiments with intact membranes indicated that the functional molecular size of the tonoplast ATPase was nearly 400,000 daltons. This suggests that the ATPase is composed of several polypeptides, possibly including the 72,000- and 62,000-dalton proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.