Coupled plasma-neutral transport simulations are performed on ADITYA-Upgrade tokamak scrape-off layer (SOL) plasma, where flows in the core and SOL were measured to reverse signs with density variation. The simulations performed using the EMC3-Eirene plasma-neutral code combination incorporate the toroidally continuous high-field-side belt limiter placed in a moderate circular tokamak equilibrium. The development of mutually counter-propagating toroidal plasma flows in the top and bottom regions of both the SOL and core is recovered for relatively high upstream density cases with high input power (300 kW and 3 m2 s−1). The origin of the flows is traced to the poloidal density variation introduced by high recycling on the inboard localized belt limiter. The results are compared with similar observations, for example, in Doppler-shifted passive charge exchange line emission on the ADITYA-Upgrade (ADITYA-U) tokamak, highlighting the role played by residual stress in the total Reynolds stress. The external stimuli, such as a localized gas puff, are discussed as potential drivers of flow, via residual stress, based on the existing resonant model of the tokamak plasma rotation.