The tissue uptake and distribution of injected [(75)Se]-sodium selenite as a variance with time and as influenced by dietary selenium status was followed in the tissues of Japanese quails,Coturnix coturnix japonica. Quails maintained on a low selenium semipurified (basal) diet and basal diets supplemented with 0.2 and 2.0 ppm selenium as sodium selenite were injected intraperitonially with(75)Se as sodium selenite (2.8 microcuries). The injected(75)Se was monitored in blood, liver, kidney, heart, and testis at 24, 72, and 144 h after injection. Maximal uptake of the injected(75)Se was observed in tissues of quails maintained on basal diet. The uptake of(75)Se in tissues in general was determined by the dietary Se status. Among the organs studied, kidney had the maximal level of(75)Se, 0.2 ppm (μg/g wet tissue) followed by liver, testis, and heart, but testis had the maximal level when the level per milligram of protein was considered, about 3.0 ng/mg protein, followed by liver, kidney, and heart. About 10-20% of the tissue(75)Se was located in the mitochondria and 50-60% in the post-mitochondrial supernatant fractions in all dietary Se levels. Significant incorporation of(75)Se in the mitochondrial membrane was observed. The percent distribution ratio between the membrane and matrix fractions of the mitochondria remained constant at all dietary Se levels which, in liver was 65∶35, in kidney 55∶45, and in testis 75∶25. However, in heart mitochondria, the distribution of(75)Se between membrane and matrix varied with dietary Se status, the ratio being 82∶18 in the basal group, and 72∶28 and 41∶59 in the 0.2 and 2.0 ppm Se-supplemented groups, respectively. This is indicative of a preferential uptake of(75)Se in the mitochondrial membrane in conditions of deficiency. About 40-60% of the mitochondrial membrane-associated(75)Se was released upon Triton treatment in all the organs. Of the membrane-bound(75)Se, about 10-15% was acid-labile in liver and kidney and 25% in the heart tissue. Possibilities of tissue specific roles, especially in the heart mitochondrial membrane-related processes, are indicated for selenium.